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We apply "-machine spectral reconstruction theory to analyze

structure and disorder in four previously published zinc sulfide

diffraction spectra and contrast the results with the most

common alternative theory, the fault model. In each case we

find that the reconstructed "-machine provides a more

comprehensive and detailed understanding of the stacking

structure, often detecting stacking structures not previously

found. Using the "-machines reconstructed for each spectrum,

we calculate a number of physical parameters – such as

configurational energies, configurational entropies and hexa-

gonality – and several quantities – including statistical

complexity and excess entropy – that describe the intrinsic

computational properties of the stacking structures.
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1. Introduction

In several companion papers (Varn et al., 2002, 2007a,b) we

presented a novel technique for the discovery and description

of planar disorder in close-packed structures (CPSs): "-
machine spectral reconstruction theory ("MSR or ‘emissary’).

We showed that the technique allows a unique, minimal and

optimal model (an "-machine) to be built up of a material’s

stacking structure from diffraction spectra. In this sequel we

demonstrate the technique using diffraction spectra from

single crystals of disordered, polytypic zinc sulfide (ZnS).

Since the discovery of polytypism in mineral ZnS crystals

(Frondel & Palache, 1948, 1950), much theoretical and

experimental effort has been expended to understand this

phenomenon (Steinberger, 1983; Mardix, 1986; Sebastian &

Krishna, 1994).

ZnS is an attractive system to study for a number of reasons:

(i) Simplicity of the unit cell and stacking rules. While many

materials are known to be polytypic (Trigunayat, 1991;

Sebastian & Krishna, 1994), the constituent modular layers

(MLs; Varn & Canright, 2001) can have a complicated struc-

ture and complex stacking rules (Brindley, 1980; Thompson,

1981; Varn & Canright, 2001). For instance, in ideal micas

there are more than a dozen atoms in a unit cell and there are

six ways in which two MLs can be stacked. Kaolins and

cronstedtites present even more complexity (Varn & Canright,

2001). In contrast, ZnS is simple in the extreme: it is composed

of but two atoms – a zinc and a sulfur (Sebastian & Krishna,

1994). They are arranged in a double close-packed hexagonal

net, with one species displaced relative to the other by a

quarter body diagonal (as measured by the conventional unit

cubic cell) along the stacking direction (Shaw & Heine, 1990).

We take this double close-packed layer to be an ML (Varn &

Canright, 2001). The stacking of MLs proceeds as for all CPSs;

namely, there are three absolute orientations each ML can



occupy – A, B and C – with the familiar stacking constraint

that no two adjacent MLs have the same orientation.

(ii) Complex polytypism. ZnS is one of the most polytypic

substances known with over 185 identified crystalline struc-

tures (Mardix, 1986; Trigunayat, 1991; Sebastian & Krishna,

1994). Of these, only about a dozen fairly short-period poly-

types (up to 21 MLs) are common in mineral ZnS, with the

remainder found in synthetic crystals. Some of the crystal

structures have repeat distances that extend over 100 MLs.

Also, many structures show considerable planar disorder. The

wide diversity of structural complexity remains one of the

central mysteries of polytypism.

(iii) Solid-state transformations. It is believed that there are

only two stable phases of ZnS: the low-temperature modifi-

cation – the �-ZnS or sphalerite (3C1) – and the high-

temperature modification – wurtzite (2H) or �-ZnS (Sebastian

& Krishna, 1994). The former transforms enantiotropically

into the latter at 1297 K. The plethora of structures suggests

that most of them are not in equilibrium, but are rather

structures that are trapped in a local minimum of the free

energy and lack the necessary activation energy to explore all

of the configuration space. It is possible to observe these

structures by annealing and then arresting the transformation

by quenching. One can then study the various intermediate

stages of the transformation.

(iv) Availability. Polytypes of ZnS, both ordered and

disordered, are easily manufactured in the laboratory by a

variety of methods (Sebastian & Krishna, 1994). One of the

more common methods is growth from the vapor phase above

temperatures of � 1373 K. Crystals can also be grown from

the melt at high pressures by the use of chemical transport,

and hydrothermally. The distribution of the polytypes

observed depends on the method used.

Nearly a dozen theories have been proposed to explain

polytypism, among them being the ANNNI model (Price &

Yeomens, 1984; Yeomans, 1988), Jagodzinski’s disorder theory

(Jagodzinski, 1954) and Frank’s screw dislocation theory

(Frank, 1951). For a complete discussion, see for example,

Verma & Krisha (1966), Trigunayat (1991) and Sebastian &

Krishna (1994). We will comment very little on the mechan-

isms that produce various polytype structures. Instead, our

focus will be on describing the disordered structures so

commonly seen. We feel that an adequate description of the

disordered structures – which so far has been lacking – is

warranted before the models that seek to explain the

mechanisms that drive the formation of disordered structures

can be evaluated, and, especially, the solid-state phase tran-

sitions which lead to them.

Previous descriptions of planar disorder in single crystals of

ZnS fall into one of two categories: the fault model (FM; Varn

et al., 2002, 2007a) and Jagodzinski’s disorder model (DM;

Jagodzinski, 1949a,b,c; Frey et al., 1986). Applications of the

FM include Roth’s study of faulting induced in hexagonal

crystals grown from the vapor phase upon annealing (Roth,

1960). Roth extracted correlation information from the

diffraction spectra by Fourier analysis and then derived

analytical expressions relating how correlation functions

decayed with both increasing separation between MLs and as

a function of the fault probability. He considered both

randomly distributed growth and deformation faults and

found that for weakly disordered specimens deformation

faulting gave the best agreement with experiment.

Significant applications of the FM to planar disorder in ZnS

have been carried out by Sebastian, Krishna and coworkers.

They studied the 2H-to-3C solid-state transformation in

vapor-grown ZnS crystals after annealing between tempera-

tures of 673 and 923 K (Sebastian et al., 1982). By analyzing

and comparing the profiles of the integer-l reflections2 with

those of the half-integer-l reflections for weakly faulted crys-

tals, they found that the disorder was largely due to the

random insertion of deformation faults. They attributed slight

discrepancies between the observed and calculated profiles to

the so-called nonrandom insertion of faults. Sebastian and

Krishna later studied the disordered stacking in 3C crystals

grown from the vapor phase, as well as those obtained from

annealing 2H crystals (Sebastian & Krishna, 1984). They

found that the structures of both the as-grown and annealed

crystals were best explained as randomly distributed twin

faults in the 3C structure. They concluded that the 2H-to-3C

transformation in ZnS was proceeded by the nonrandom

nucleation of deformation faults occurring preferentially at

two ML separations.

To better understand the nature of the nonrandom insertion

of deformation faults in the 2H structure, Sebastian and

Krishna introduced a three-parameter model that assigned

separate probabilities to the random insertion of deformation

faults, as well as deformation faulting at two and three ML

separations (Sebastian & Krishna, 1987a,b). They derived

analytical expressions for the diffraction spectra in terms of

these parameters and concluded that both the 2H-to-3C and

the 2H-to-6H transformations proceeded via the nonrandom

nucleation of deformation faults. Their analysis showed that

these transformations occurred simultaneously in different

regions of the same crystal. They attributed this to variations

in the stoichiometry. Sebastian (1988) gave a similar treatment

that came to the same conclusions. With the exception of

Roth, all of these analyses depended on carefully character-

izing the change in Bragg peaks as a small amount of disorder

was introduced. We have previously criticized the FM

approach elsewhere (Varn et al., 2002, 2007a).

Jagodzinski’s DM is a two-parameter model that assumes

two thermodynamically stable phases in CPSs: 2H and 3C.

Therefore, two kinds of fault are found (i.e. structure and not

mechanism): namely, cubic faults in 2H and hexagonal faults in

3C. By choosing appropriate values for the two model para-

meters model 4H structures can also be modeled. Within this

framework, an analytical expression for the diffracted inten-
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1 We use the Ramsdell notation to specify common crystal structures in CPSs
(Varn et al., 2007a).

2 The notation and definitions of the variables used here have been introduced
elsewhere (Varn et al., 2007a). Also note that our definition of l differs slightly
from that used by other authors.



sity is derived that depends on the model parameters in a

complicated manner. Nonetheless, model parameters can be

selected that give the best agreement with experiment.

Müller (1952) used this method to analyze faulted ZnS

diffraction spectra and found that while he was able to obtain

reasonable agreement between theory and experiment for a

few spectra, for many he was not. Singer & Gashurov (1963)

re-examined this approach and concluded that the DM applies

when faulting is random, but when the faulting is nonrandom,

as it is suspected to be in many ZnS specimens, the model fails.

However, Frey et al. (1986) studied the 3C-to-2H transfor-

mation in single crystals of ZnS using the DM and were able to

obtain excellent agreement between theory and experiment.

They fit the experimental diffraction spectrum to the analy-

tical one of the DM. Owing to the complicated nature of the

expression, however, they treated eight constants that depend

on the two model parameters as independent. From these

eight fitted parameters they were able to find the two model

parameters that best fit each spectrum.

However, questions must be raised concerning the mathe-

matical rigor used to find the model parameters in this way.

The description of the stacking disorder as given by the DM is

a special constrained case of the r ¼ 2 computational

mechanics approach. As in the latter, in the DM there is no

assumption of weak faulting and diffuse scattering is used to

build the model. Since the spectra we analyze have not been

previously treated using the DM and it is a special case of our

own, the DM is not discussed further here.

A third possible method of discovering structural infor-

mation on disordered solids from diffraction spectra employs

a reverse Monte Carlo (RMC) technique (Keen & McGreevy,

1990; Proffen & Welberry, 1998; Welberry & Proffen, 1998). In

this method one typically searches for a configuration of

constituent atoms such that a signal, e.g. the diffraction spec-

trum, estimated from the candidate structure most closely

matches the experimental signal. Notably, this technique can

be applied to disorder in three dimensions. One drawback,

however, is that candidate structures are often found that are

physically implausible. One needs to impose assumptions to

eliminate these. The application of RMC to layered solids is a

subject of current research (Varn & Crutchfield, 2006).

In this work, we apply computational mechanics (Crutch-

field & Young, 1989; Feldman & Crutchfield, 1998; Shalizi &

Crutchfield, 2001) to discover and describe disordered

stacking sequences in four previously published ZnS diffrac-

tion spectra. A Fourier analysis was carried out on each

spectrum to find correlation information between MLs and

then the probability distribution of the stacking sequences was

calculated. From the latter we reconstruct the "-machine that

gives the stochastic process for the ML stacking and compare

it to previous FM analyses. From the reconstructed "-machine,

the configurational entropy per layer, average configurational

energy per Zn–S pair, memory length, hexagonality and

generalized period (Varn et al., 2007b) were calculated for

the first time. The diffraction spectra of the four samples

are well described using the computational mechanics

approach.

We note that our primary purpose in the following is

expository; that is, we wish to demonstrate the efficacy of

"MSR on actual materials. Since we use diffraction spectra

from older studies (Sebastian & Krishna, 1994), the analyses

given here are less than ideal. Specifically, we digitized data

from published spectra and found that there was significant

systematic error in each original spectrum. Additionally, the

experimental data were not reported with error bars. Despite

these possible shortcomings, "MSR allows us to offer more

comprehensive structural and physical analyses of the spectra

than given by previous workers.

Our development is organized as follows. In x2 we outline

our approach, including a brief discussion of the experimental

methods, and our analysis. In x3 the results of "-machine

reconstruction for four experimental ZnS diffraction spectra

are given, compared with the FM approach wherever possible.

In x4 we calculate the configurational energies per Zn–S pair

and the hexagonality for the various structures from our

reconstructed "-machines. In x5 we give our conclusions and

propose some directions for future theoretical and experi-

mental work.

2. Methods

The four diffraction spectra we analyze originate from

Sebastian & Krishna (1994) and are labeled SKXXX by the

page (XXX) on which they appear in that source. These data

were collected in the 1980s and since they no longer exist in

numerical form (Sebastian, 2001), we digitized them from the

diffractograms given in the Sebastian and Krishna publication

(Sebastian & Krishna, 1994). For each diffraction spectrum,

the digitization process typically resulted in 200–500 data

points. We further performed a linear interpolation between

these points so that our representation of each experimental

diffraction spectrum consisted of data points separated by

�l ’ 0:0001. In all the numerical analyses we used this finer

mesh. However, for the sake of clarity, when we visually

compare the diffraction spectra generated from "MSR with

experimental spectra, we only display representative experi-

mental points.

In this section we give a brief synopsis of the experimental

procedure, discuss the assumptions made to analyze the data

and list the corrections applied to the experimental spectra.

2.1. Experimental details

The experimental procedure is given in more detail else-

where (Sebastian & Krishna, 1994, 1987b; Sebastian et al.,

1982; Sebastian, 1988). Briefly, the crystals were grown from

the vapor phase at a temperature in excess of 1373 K in the

presence of H2S gas. Each crystal was needle-shaped,

approximately 0.1–0.4 mm in diameter and 1–2 mm in length.

Two of the four crystals were further annealed for 1 h at 573

and 773 K. These investigations were performed to better

understand the fault structures they contain, as well as study

the solid-state transformations that ZnS crystals undergo.
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The intensity along the 10:l reciprocal lattice row was

recorded using a four-circle single-crystal diffractometer for

each specimen in steps of approximately �l ¼ 0:005. [Our

definition of l differs slightly from that of Sebastian & Krishna

(1994) so the l-increment we report also differs.] The crystal

and the counter were held stationary while the crystal was

illuminated with Mo K� radiation. The sharp reflections along

the h� k ¼ 0 (mod) 3 rows were used to orientate each

crystal. The divergence of the incident beam was adjusted to

cover the mosaic spread for each crystal. The experimental

diffraction spectrum is reported as the total number of counts

versus l. The crystals were examined under a vickers projec-

tion microscope and did not show signs of kinking or shearing,

even after annealing. They did show parallel striations or

stripes perpendicular to the stacking direction.

2.2. Assumptions

To make the analysis tractable, we employ the following

assumptions which are common in the analysis of planar

disorder in ZnS:

(i) Each ML is perfect and free of distortions and defects. We

assume that each ML is identical and the MLs themselves are

free from defects. That is, each ML is crystalline in the strict

sense, with no point defects, impurities or distortions in the

two-dimensional lattice structure. This clearly precludes the

possibility of screw dislocations, which are known to play a

role in the polytypism of some ZnS crystals (Sebastian &

Krishna, 1994; Michalski, 1988). Since each of the crystals we

analyze was examined under a Vickers projection microscope

and no such dislocations were seen, and the crystals retained

their shape after annealing, this seems reasonable. [It is known

(Sebastian & Krishna, 1994) that during the solid-state

transformations of specimens of ZnS with an axial screw

dislocation, the specimen will exhibit ‘kinking’ with a char-

acteristic angle of 19� 280.]

(ii) The spacing between MLs is independent of the local

stacking arrangement. There is known to be some slight

dependence of the inter-ML spacing depending on the poly-

type (Sebastian, 1988; Sebastian & Krishna, 1994). For the 2H

structure in ZnS, the inter-ML spacing is measured to be

3.117 Å. For the 3C structure the cubic cell dimension is

ac ¼ 5:412 Å, which gives a corresponding inter-ML spacing

of 3.125 Å. Therefore, to an excellent approximation, this

spacing is independent of the local stacking environment in

ZnS.

(iii) The scattering power of each ML is the same. We assume

that each ML diffracts X-rays with the same intensity. There is

no reason to believe that this is not so, unless absorption

effects are important or the geometry of the crystal is such that

each ML does not have the same cross-sectional area.

(iv) The stacking faults extend over the entire fault plane.

Examination under microscope indicates that this is generally

true. However, Akizuki (1981) found evidence that the faults

do not extend completely over the faulted MLs by examining a

partially transformed ZnS crystal under an electron micro-

scope.

(v) The ‘stacking process’ is stationary. We simply mean that

the faults are uniformly distributed throughout the crystal. In

other words, we assume that the probability of finding a

particular stacking sequence is independent of its location in

the crystal. This does not, however, preclude regions of crys-

talline structure interspersed between regions of disorder. It

simply means that the statistics of the stacking do not change

from one end of the crystal to the other.

Notably absent from this list are any assumptions on the

crystal structure present (if any) and how the sample might

deviate from that structure. In contrast to the FM, we invoke

no a priori structural assumptions concerning the stacking

sequence.

2.3. Corrections to the experimental spectra

We corrected each spectrum for the following effects:

(i) The atomic scattering factor. This correction accounts for

the spatial distribution of electrons, as well as for the wave-

length of the incident radiation and angle of reflection.

Calculations of these effects are given in standard tables

(Hahn et al., 1992) and we employ them in our work.

(ii) The structure factor. The structure factor (Sebastian &

Krishna, 1994) accounts for the two-atom basis in ZnS.

(iii) Anomalous scattering factors. Also called dispersion

factors, the anomalous scattering factors correct for the

binding energy of the electrons and the phase shifts (Hahn et

al., 1992). For our case, we find these to be small, but have

included them nonetheless.

(iv) Polarization factor. We use the standard correction

factor for unpolarized radiation (Warren, 1969).

Factors we did not correct for include the following:

(i) Thermal factors. At room temperature, this effect is

small for ZnS (Varn, 2001).

(ii) Absorption factor. For the geometry of the ZnS crystals

we analyzed, the linear mass coefficient (Woolfson, 1997;

Milburn, 1973) is much larger than the thickness, therefore, we

ignore it.

(iii) Instrument resolution. This is not reported with the

experimental data, so we do not deconvolve the spectrum.

3. Analysis

The structural analysis of four experimental diffraction

spectra taken from Sebastian & Krishna, (1994) is now

discussed. "MSR was applied to each spectrum to build a

model that describes the stacking process (Varn et al., 2007a).

From our model, various measures of intrinsic computation

were calculated for each spectrum. The results were compared

with those obtained by previous researchers using the FM.

Since the experimental spectra were not reported with error

bars, we were unable to set an error threshold �, as required in

"MSR. Instead, we found that each increase in memory length

r continued to give a better description of each spectrum

(Varn, 2001). We performed "MSR up to r ¼ 3 for each

spectrum. Note that at r ¼ 3, the resulting "-machine is
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specified by 23 ¼ 8 parameters. To find the correlation func-

tions (CFs) from the "-machines, we used a sample length of

400 000 MLs, as generated by the "-machine. The diffraction

spectra were calculated using 10 000 MLs. The experimental

spectra were normalized to unity over the l interval used for

reconstruction, as were the spectra calculated from each "-
machine. For the spectra calculated from the FM, we set the

overall scale to best describe the Bragg peaks, as shown in

Sebastian & Krishna (1994). We also calculated the profile R

factor (Varn et al., 2007a) to evaluate the agreement between

experiment and theory for each spectrum.

Note that we have previously discussed two of the spectra,

SK134 and SK135 (Varn et al., 2002). Here we present the

background for claims made in the previous paper, as well as

provide a more in-depth analysis.

3.1. SK134

The corrected diffraction spectrum along the 10:l row for an

as-grown 2H ZnS crystal is shown in Fig. 1. One immediately

notices that the spectrum is not periodic in l, as it should be,

but instead suffers from variations in the intensity. The peaks

at l ¼ 0:0 and l ¼ 1:0 are of similar intensity, but the peaks at

l ¼ �0:5, 0.5 and 1.5 seem to suffer from a steady decline in

intensity. We can therefore be confident that this spectrum

contains substantial systematic error, as reported by the

experimentalists.

This difference in diffracted intensity between peaks results

from the finite thickness of the Ewald sphere owing to the

divergence of the incident beam (Sebastian & Krishna, 1987b,

1994). A suitable choice of geometry can minimize, but not

eliminate, these effects such that only a gradual variation in I

with �l is found. Since analysis by the FM depends only on the

change in shape and the position of the Bragg-like peaks, such

a slow variation of the diffracted intensity with l will not affect

the conclusions drawn from an FM analysis. It is possible to

correct these effects (Pandey et al., 1987; Sebastian & Krishna,

1994), but this has not been carried out according to the

literature.

Our analysis depends on selecting an appropriate l interval

where variations in diffracted intensity owing to these

experimental effects are minimized. It is important then to

select an interval that is relatively error-free. There are two

criteria, termed figures-of-merit and denoted � and �, that can

be used for this (Varn et al., 2007a). It can be shown that in an

error-free spectrum the parameters must be equal to the

constant values �1
2 and 1, respectively, for any unit l interval,

regardless of the amount of planar disorder present. The

extent that � and � differ from their theoretical values over a

given l interval measures how well the diffraction spectrum

over the interval can be represented by a physical stacking of

MLs. It makes sense then to choose an l interval for "-machine

reconstruction such that the theoretical values of the figures-

of-merit are most closely realised. This does not, of course,

guarantee that the interval is error-free. Glancing at Fig. 2

shows that � ¼ �0:51 and � ¼ 0:95 over the interval

l 2 ½0:04; 1:04�.

We perform "MSR (Varn et al., 2007a) and find that the

smallest-r "-machine that gives reasonable agreement between

the measured and "-machine spectra has a memory length of

r ¼ 3. The reconstructed "-machine is shown in Fig. 2 of Varn

et al. (2002). The large asymptotic state probabilities for the C

and H causal states (CSs), as well as the large inter-state

transition probabilities between them, indicate this is predo-

minantly a 2H crystal. More specifically, the probability of

sequences 1010 and 0101 appearing, corresponding to the 2H

crystal structure, have a combined total weight of about 64%.

The remaining probability is distributed among the other 14

length-4 sequences. It is tempting to interpret the remaining

structure in terms of faults and, indeed, it seems we can.

Let us treat the transitions s ¼ 0 from causal state E and

s ¼ 1 from state F as though they are missing for the purposes

of a fault analysis. This implies that the sequences 0001 and

1000 are disallowed. Of course, this cannot be exactly true, as

the CS F would then be isolated from the rest of the "-
machine. In this case, the "-machine would not be strongly
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Figure 1
Diffraction spectrum along the 10:l row from SK134 corrected for atomic
scattering factors, the structure factor, dispersion factors and the
polarization factor (Hahn et al., 1992; Woolfson, 1997; Warren, 1969).
We see that the spectrum is not periodic in l, as it should be. This indicates
that significant errors exist in the data.

Figure 2
Experimental and theoretical figures-of-merit – � and � – as a function of
l0 for the diffraction spectrum SK134. We define l0 as the point at which
integration over a unit l interval is initiated. We find that l0 � 0:04 gives
the best agreement with the theoretical values.



connected and, as such, cannot represent a physical stacking of

MLs. However, the combined probability weight of these two

sequences is < 1%, so neglecting them gives only a small error

in our intuitive understanding of the faulting structure.

On the left half of the "-machine, there is a structure

associated with a 2H deformation fault ½ABCD� with prob-

ability weight 0.16 = Pð1011Þ þ Pð0111Þ þ Pð1110Þ þ Pð1101Þ.

We can interpret the causal-state cycle (CSC) ½DBEGHC� as a

layer-displacement fault and see that it is assigned a prob-

ability weight of 0:06. The right portion contains the CSC

½EGH� with probability weight 0:06, which is associated with

growth faults. The CSCs ½A� and ½F�, identified as the 3C

structure, have a combined weight of 0.08.

Given these observations, a possible interpretation

suggested by the "-machine is that SK134 has crystal structures

and faults in the proportions given in Table 1. The decom-

position present is reasonable since there is an underlying

crystal structure present and the smaller, faulting paths are not

very probable. As we will see, this need not always be the case.

Sebastian & Krishna (1994) have analyzed this diffraction

spectrum using the FM and found that approximately one in

every 20 MLs is deformation faulted, so they described the

stacking structure as a faulted 2H crystal with 5% random

deformation faulting. This is equivalent to assigning CSCs

responsible for deformation faulting a total probability weight

of 0.17.

We compare the structure analyses of the two models in

Table 1. We see that both analyses agree that the dominant

structure is 2H, although the "-machine attributes less of the

crystal structure to this ‘parent’ phase. Similarly, both find that

structures associated with deformation faulting are important

and assign them almost equal weights.

They differ, however, in that the "-machine finds additional

faulting structures (growth and layer-displacement faulting),

as well as the 3C crystal structure. Since this crystal will

transform into a twinned 3C structure, if annealed at suffi-

ciently high temperatures for long enough, the latter is easily

understood as a nascent structure in that process. Discovering

the presence of a weak 3C structure is not unreasonable since

there is some slight enhancement of the diffracted intensity at

l ’ 1=3 and l ’ 2=3. The other faulting structures seen are less

easily understood. Growth faults, so-named because they

primarily are formed during the growth of the 2H crystal, are

not expected to play an important role in the solid-state

transformations of ZnS (Roth, 1960). Their presence here may

result from the initial growth of the crystal. The small amount

of layer-displacement structure could be seen as two adjacent,

yet oppositely oriented, deformation faults. That is, a defor-

mation fault in a 2H structure is simply a spin flip in the Hägg

notation (Varn et al., 2007a), so that the sequence

. . . 010101 . . . transforms to . . . 011101 . . . as a result of one

deformation and then to . . . 011001 . . . upon another resulting

in a layer-displacement fault: . . . 011001 . . .. This might imply

some coordination between faults. Alternatively, the

mechanism of layer-displacement faulting may play some

minor role in the solid-state transformation.

However, one cannot disambiguate these from the available

spectra and the reconstructed "-machine. The "-machine only

provides information on the structure. We must look outside

the "-machine to formulate an understanding of how the

polytype came to be stacked in this way. This is the critical

difference between faulting mechanism and faulting structure.

In the former, a physical process is responsible for causing the

MLs to shift or deviate from a perfect crystal. In the latter,

within the limit of weak faulting, the physical process leads to

a given (statistical) structure. In this limit it may be possible to

postulate with some certainty that the mechanism resulted in

the observed structure. For more heavily faulted crystals,

however, such an identification of structure with mechanism is

dubious. Other techniques, such as numerical simulations

(Kabra & Pandey, 1988; Engel, 1990; Shrestha et al., 1996;

Shrestha & Pandey, 1996a,b, 1997; Gosk, 2000, 2001) or

analysis of a series of crystals in various stages of the trans-

formation, are necessary to unambiguously determine the

mechanism (Varn & Crutchfield, 2004).

Returning to the analysis of SK134, Fig. 3 compares the CFs

obtained from the experimental diffraction spectrum, those

obtained from the "-machine and those from the FM. There is

reasonable agreement between the experimental and "-
machine-predicted CFs. For small n, however, the FM over-

estimates the amplitude in the oscillations in QsðnÞ.
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Table 1
Structural decomposition of SK134 according to the reconstructed "-
machine of Fig. 2 of Varn et al. (2002) and according to the fault model
analysis of Sebastian & Krishna (1994).

The latter is valid only under the assumption of weak faulting (reproduced
from Varn et al., 2002).

Structure "-Machine (%) Fault model (%)

2H 64 83
3C 8 0
Deformation fault 16 17
Growth fault 6 0
Layer-displacement fault 6 0

Figure 3
QsðnÞ versus n for experimental spectrum SK134 (open squares
connected by solid line), the fault model (open circles) and the r ¼ 3 "-
machine (solid squares). The QsðnÞ are defined only for integer values of
n, but lines are drawn connecting adjacent points as an aid to the eye. We
see good agreement up to n ’ 15, after which the r ¼ 3 approximate
correlation functions decay too quickly to their asymptotic value of 1=3.



The experimental diffraction spectrum is compared with

that calculated from the FM and from the "-machine in Fig. 1

of Varn et al. (2002). Both models give good agreement near

the Bragg peaks at l ¼ 0:5 and l ¼ 1:0, with perhaps the FM

performing a little better at l ¼ 1:0. The diffuse scattering near

the shoulders of the l ¼ 0:5 peak are better represented by the

"-machine. We calculate the profile R factor between

experiment and the FM to be RFM ¼ 33% and between

experiment and "MSR to be R�M ¼ 20%.

So, our analysis of SK134 is an improvement over the FM

analysis in several important ways.

(i) Even in the limit of weak faulting, "MSR finds closer

agreement with experiment than the FM, as measured by the

profile R factors.

(ii) Again in the limit of weak faulting, the "-machine can be

decomposed (although not necessarily uniquely) to give an

estimate of the crystal and fault structure present.

(iii) As such, we were able to identify and quantify several

additional structures in the crystal, namely the presence of a

small amount of 3C crystal, growth and layer-displacement

faults.

3.2. SK135

The next sample we examine is a twinned 3C crystal

obtained by annealing a 2H crystal at 773 K for 1 h. The

diffraction spectrum for this crystal is given in Fig. 3 of Varn et

al. (2002). We find that the figures-of-merit are closest to their

theoretical values over the interval l 2 ½�0:80; 0:20� with

values � ¼ �0:50 and � ¼ 0:93. The smallest r "-machine that

gives reasonable agreement with experiment was found at

r ¼ 3 and has a profile R factor of R�M ¼ 13%. The resulting

"-machine is shown in Fig. 4 of Varn et al. (2002). Based on the

presence of asymmetrically broadened peaks and the absence

of peak shifts, an FM analysis (Sebastian & Krishna, 1994)

finds this sample to be a twinned 3C crystal with 12% twinned

faulting. The profileR factor between experiment and the FM

is found to be RFM ¼ 33%.

The large CS probabilities associated with CSs A and F, as

well as their large self-loop transition probabilities, suggest

that this is a twinned 3C crystal. We also note that the tran-

sitions corresponding to antiferromagnetic paths (0101 and

1010) have a relatively small combined weight of only about

4%. In fact, the probability weight for the 0101 path is zero.

(The transition from CS H to CS C is missing.) This indicates

that the 2H structure has largely been eliminated. In addition

to the 0101 path, the 1001 and 0010 paths are also missing. This

implies that twinned faulting is important, but also the

remnant of the 1010 path has some role. Instead of a simple

twinned fault [ABEF] giving the sequence . . . 1111j00000 . . .,
where the vertical line indicates the fault plane, the path

[ABCHEF] giving the sequence . . . 1111j01000 . . . has

approximately twice as much probability weight associated

with it. In the "-machine’s right portion twinned faulting

[FGDA] is largely responsible for the (0)* 3C cycle converting

to the (1)* 3C cycle, and we also observe that double defor-

mation faulting [FGDBE] plays a role.

It is interesting to mention that while an ML of ZnS has

spin-inversion symmetry (Varn & Canright, 2001) and, thus,

the one-dimensional Hamiltonian describing the energetics of

the stacking is also spin-invariant, in general "-machines need

not be spin-inversion invariant. (Note that the "-machine in

Fig. 4 of Varn et al., 2002, is not spin-inversion invariant.)

There is, of course, no reason why one should demand spin-

inversion invariance. After all, then one could never have a

crystal of purely one 3C structure or the other. However, since

this crystal was initially in the 2H structure – which is spin-

inversion invariant – it is curious that this is not preserved as

the crystal is annealed. That is, there is no reason to expect

that faulting should occur preferentially with one chirality.

Notably, the FM always assumes spin-inversion symmetry.

Examining the CF QsðnÞ estimated from experiment with

those found from the "-machine in Fig. 4, we find reasonable

agreement up to n ’ 20. The QsðnÞ found from the FM

generally overstate the magnitude of the oscillations in the

CFs.

We can further examine the diffraction spectra. In Fig. 3 of

Varn et al. (2002), the diffraction spectrum found from the FM

and the "-machine are compared with experiment. The "-
machine gives a good fit, except perhaps at a shoulder in the

experimental spectrum at l ¼ �0:6 and the small rise at

l ¼ �0:16. The latter might be understood as a minor

competition between the 3C and 6H CSCs that is not being

well modeled at r ¼ 3. Comparison of the diffraction spectrum

from the FM with that from experiment reveals good agree-

ment with the peak at l ¼ �0:33 and poor agreement with the

one at l ¼ �0:67. This is not surprising as the FM did not use

the peak at l ¼ �0:67 to find the faulting structure. Likewise,

the diffuse scattering between peaks is not at all well repre-

sented by the FM. Additionally, the small rise in diffuse

scattering at l ¼ �0:16 is likewise absent in the FM diffraction

spectrum.

A comparison between the FM and "MSR analyses of

SK135 illustrates several important points.
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Figure 4
Comparison of the QsðnÞ versus n for experimental spectrum SK135
(open squares), the "-machine (solid squares) and the FM (open circles).
The "-machine gives good agreement with experiment, while the FM
overestimates the oscillation magnitude.



(i) This diffraction spectrum shows considerable disorder,

and as such the FM is considerably less successful in repro-

ducing the experimental diffraction pattern. (R�M ¼ 13%
versusRFM ¼ 33%). Since "MSR does not assume any kind or

amount of crystal or fault structure and uses the all the

information in the diffraction spectrum, it functions consid-

erably better than the FM for highly disordered crystals.

(ii) Therefore, "MSR captures the diffuse scattering

between the Bragg-like peaks much more effectively.

(iii) "MSR shows that the faulting structure between the

two 3C crystal structures is not simply due to twin faulting.

Rather, the sequence . . . 1111j01000 . . . is more likely than the

simpler fault . . . 1111j0000 . . ..
(iv) "MSR does not require spin-inversion symmetry as the

FM does.

3.3. SK137

The third experimental spectrum we analyze comes from an

as-grown disordered, twinned 3C crystal. The diffraction

spectrum for this crystal along the 10:l row is shown in Fig. 5.

The figures-of-merit are closest to their theoretical values over

the interval l 2 ½�0:8; 0:2� with values of � ¼ �0:49 and

� ¼ 0:98. We performed "-machine reconstruction up to r ¼ 3

and found that this produces reasonable agreement with

experiment, giving a profile R factor of R�M ¼ 17%. The

r ¼ 3 "-machine is shown in Fig. 6. An FM analysis finds

SK137 to be a twinned 3C crystal with 6:8% twinned faulting

(Sebastian & Krishna, 1994). The FM calculated diffraction

spectrum has a profile R factor of R�M ¼ 58% when

compared with experiment.

A comparison of the CFs from experiment, the FM and the

"-machine is shown in Fig. 7. For smaller n, the "-machine

gives good agreement with experiment, although the error

increases at larger n. As shown elsewhere (Varn, 2001), the

experimental CFs maintain small, but persistent oscillations

about their asymptotic value of 1=3 up to n ’ 40, while the

CFs derived from the "-machine effectively reach this

asymptotic value at n ’ 25. This leads us to speculate that

there is some structure in the stacking process that the "-
machine is missing. We expect that reconstruction at r ¼ 4 will

prove interesting here. This has not yet been completed.

The FM fares markedly worse. It substantially over-

estimates the strength of the oscillations in the CFs for all n.

A comparison of the diffraction spectra for experiment, the

FM and the "-machine is given in Fig. 5. The "-machine gives

reasonable agreement everywhere except around the Bragg

peaks at l ¼ �0:33 and l ¼ �0:67. Here the "-machine gives a

value for the peak intensity 15 and 35% lower, respectively,

than experiment. The FM does much better at the Bragg

peaks, as one might expect. However, the diffuse scattering

between the peaks and especially the broad-band rise in

intensity near l ¼ �0:5 are simply missing in the FM diffrac-

tion spectrum. The "-machine fit in this region is substantially

better, picking up a number of important spectral features,

such as broad band components and broadened peaks.
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Figure 5
Comparison of the experimental diffraction spectrum SK137 along the
10:l row (triangles) for a disordered 3C single crystal with the diffraction
spectra calculated from the FM with 6.8% twinned faulting (dashed line)
and the "-machine (solid line). The profile R factor between experiment
and the "-machine calculated diffraction pattern is R�M = 17%. The FM
gives considerably worse agreement, with a calculated profileR factor of
RFM = 58% between the FM model and experiment.

Figure 6
The reconstructed r ¼ 3 "-machine for SK137. The strong self-loop
transition probabilities between causal states S0 and S7, as well as their
large asymptotic state probabilities, suggest that the . . . 0000 . . . and
. . . 1111 . . . structures are important. Notice that, unlike the "-machine
for SK135, the CSC ½S2S5� is present, suggesting that the associated 2H
structure is present. The absence of the transition between CSs S1 and S3

implies that the 0011 sequence, and therefore the CSC associated with the
6H structure, is not present.

Figure 7
Comparison of the CF QsðnÞ versus n experimental spectrum SK137
(open squares), the r ¼ 3 approximate "-machine (solid squares) and the
FM (open circles).



What does the "-machine imply about the stacking process?

All CSs and allowed transitions are present, except for the

transition between S1 and S3. This absent transition implies

that the 0011 stacking sequence is not present in SK137. This

then means that the 000111 sequence, and hence the CSC

½S7S6S4S0S1S3� associated with the 6H structure (Varn et al.,

2006a), is also absent. Therefore, in this twinned 3C crystal

there is no 6H structure. This is surprising since many ZnS

spectra show enhancement about the 6H positions during

solid-state phase transitions from 2H to 3C. In Fig. 5 there is

(arguably) a slight increase in diffracted intensity at l ¼ �0:16

and l ¼ 0:16. Therefore, the absence of the 6H structure does

seem to be echoed in the experimental spectrum. There is,

however, a large broadband increase in intensity about

l ¼ �0:5 and a much smaller increase about l ¼ 0:0. Reflec-

tions at these l are usually associated with the 2H structure,

with the half-integer peaks carrying three times the intensity

of the integer peaks. The "-machine does show that the CSC

½S2S5� associated with the 2H structure is present. The

frequency of occurrence of the 0101 and 1010 stacking

sequences together make up about 12% of the total prob-

ability weight on the "-machine. Even though

PCSCð½S2S5�Þ � 1, it is not unreasonable to suggest that the 2H

structure is present.

We find several important lessons from the analysis of

SK137.

(i) Again, "MSR shows significant improvement over the

FM in reproducing the experimental spectrum, especially the

diffuse part.

(ii) As with the "MSR analysis of SK134, we find evidence

for two crystal structures, both the twinned 3C and the 2H

structures.

(iii) "MSR can also exclude the possibility of certain crystal

structures, such as the 6H structure, based on the absence of

the CSC associated with this crystal structure.

(iv) "MSR can have difficulty in reproducing the Bragg-like

peaks, such as those at l ¼ �0:67 and l ¼ �0:33.

This, coupled with difficulties reproducing the small but

persistant oscillation in the CFs at larger n, hints that there are

stacking structures that can only be captured at longer

memory lengths.

3.4. SK229

Lastly, we examine an as-grown 2H crystal. The diffraction

spectrum for this crystal is shown in Fig. 8. We find the figures-

of-merit closest to their theoretical values over the interval

l 2 ½�0:33; 0:67� with values of � ¼ �0:49 and � ¼ 1:00. We

find that the smallest-r "-machine that gives reasonable

agreement between the measured and "-machine spectra has a

memory length of r ¼ 3. The reconstructed "-machine is

shown in Fig. 9. The large asymptotic state probabilities for the

S2 and S5 CSs, as well as the large inter-state transition

probabilities between them, indicate this is predominantly a

2H crystal. More specifically, the probability of seeing

sequences 1010 and 0101, corresponding to the 2H cycle, have

a combined total weight of � 82.5%. The remaining prob-

ability is distributed among the other 14 length-4 sequences. It

is tempting to interpret the remaining structure as faults and,

indeed, we can.

Let us treat the transitions s ¼ 0 from S6 and s ¼ 1 from S1

as though they are missing. These are the least probable
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Figure 8
Comparison of the experimental diffraction spectrum SK229 (dashed
line) and that calculated from the reconstructed "-machine (solid line).
There is generally good agreement between the two, except that the
Bragg-like peaks from the "-machine are slightly displaced from the
experimental spectra and the maximum from the "-machine over-
estimates experiment. The "-machine also has some difficulty reprodu-
cing the shape of the experimental spectra. The profile R factor between
the two spectra is R�M = 29%.

Figure 9
The r ¼ 3 "-machine reconstructed for SK229. The large asymptotic state
probabilities for the S2 and S5 states, as well as the large state-transition
probabilities between them, show that this is predominately a 2H crystal
with some faulting.

Table 2
The FM structural interpretation of the reconstructed "-machine of Fig. 9.

This is valid only under the assumption of weak faulting.

Structure Contribution (%)

2H 82
3C 4
Deformation fault 9
Growth fault 4
Other disorder 1



transitions in the "-machine: Pð0;S6Þ ¼ PðS6ÞPð0jS6Þ ’ 0:004

and Pð1;S1Þ ¼ PðS1ÞPð1jS1Þ ’ 0:002. Then, in the left half of

the "-machine there is a structure associated with a 2H

deformation fault ½S7S6S5S3� with probability weight

0:040 ¼ Pð1011Þ þ Pð0111Þ þ Pð1110Þ þ Pð1101Þ. In the right

half there is likewise a 2H deformation fault structure

½S0S1S2S4� with weight 0:049 ¼ 1
2 Pð0100Þ + Pð1000Þ + Pð0001Þ

+ 1
2 Pð0010Þ. The right portion contains the CSC ½S2S4S1� with

weight 0:036 ¼ 1
2 Pð0100Þ þ Pð1001Þ þ 1

2 Pð0010Þ, which is

associated with growth faults. The CSCs ½S0� and ½S7�, iden-

tified as the 3C structure, have a combined weight of 0:041.

Given these observations, the interpretation suggested by the

"-machine is that SK229 has crystal structures and faults in the

proportions given in Table 2. The decomposition there is

reasonable since there is an underlying crystal structure

present and the smaller faulting paths are not too

large.

SK229 has not been analyzed quantitatively using the FM.

By comparing the FWHM of the integer-l to half-integer-l

peaks, Sebastian & Krishna (1994) concluded that deforma-

tion faulting is the primary vehicle responsible for the devia-

tion from crystallinity seen here. We are in agreement, except

that we also detect small amounts of the 3C crystal structure

and some growth faults.

Fig. 10 compares the CFs from experiment and the "-
machine. The agreement is good, although the reconstructed

"-machine underestimates somewhat the magnitude of the

oscillations in QsðnÞ. A visual comparison of the experimental

diffraction spectrum and that generated from the "-machine

(Fig. 8) shows that there is reasonable agreement. We calcu-

late an R factor between the two spectra of R�M ¼ 29%.

There are some noticeable differences between the two

spectra, however. First, we see that Bragg-like peaks in the "-
machine spectrum are slightly shifted from those in the

experimental spectrum. Second, the "-machine spectrum

overestimates the maximum intensity in each peak. Third, the

peak profiles are qualitatively different. For the "-machine, the

shoulders of the peaks are broader than those of the experi-

ment and the crowns are narrower. Indeed, the peaks in the

experimental spectrum appear plateau-like, i.e. the sides are

very steep and the crown is rounded. It is not known if this

results from instrument resolution or if it is a material prop-

erty.

This example shows that slightly

faulted crystals with sharp Bragg-like

structures can be difficult to analyze.

Certainly, the basic crystal structure is

clear, in this case 2H, but a very fine

experimental l-mesh is needed to map

each Bragg peak. In contrast, highly

disordered spectra with significant

diffuse scattering are less sensitive to

experimental details, such as instrument

resolution. For highly diffuse spectra,

where the assumptions underlying the

FM break down, "MSR both in practice

(extraction of correlation information)

and in principle (the "-machine describes any amount of

disorder) reaches its full potential.

We, therefore, find two important lessons from the analysis

of SK229.

(i) While, in principle "MSR works equally well for both

crystalline and highly disordered samples, there are experi-

mental difficulties associated with the former. The Bragg

peaks in crystals need to be mapped out very carefully and in

clear contrast to any diffuse scattering.

(ii) Again, a sensible decomposition of the "-machine for a

nearly crystalline sample yields a crystal and fault distribution

that is likewise sensible.

4. Physics from """-machines

Now that we have models ("-machines) for the stochastic

processes underlying the observed ML stacking for each

sample, we can calculate a range of structural, computational

and physical characteristics that describe the stacking patterns

and disorder. In Table 3 we list the measures of intrinsic

computation and characteristic lengths calculated for each

sample, as well as for three crystal structures for comparison.
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Table 3
A comparison of the three characteristic lengths and three measures of intrinsic computation that
one can calculate from knowledge of the "-machine.

We calculate them for the experimental diffraction spectra, as well as for three crystal structures for
reference. Recall that � ¼ C� � E� rh� (Varn et al., 2007a).

System �c P rl h� C� E �

2H 1 2 1 0 1.0 1.0 0.0
3C 1 1 0 0 0.0 0.0 0.0
6H 1 6 3 0 2.6 2.6 0.0
SK134 9:5� 0:5 4.8 3 0.50 2.3 0.75 �0.1
SK135 4:4� 0:7 5.6 3 0.59 2.5 0.71 0.0
SK137 12� 3 6.7 3 0.65 2.7 0.79 0.0
SK229 19� 2 3.5 3 0.30 1.8 0.89 0.0

Figure 10
Comparison of the CF QsðnÞ versus n experimental spectrum SK229
(solid squares) and the "-machine (open squares).



4.1. Characteristic lengths in polytypes

We first note that it was necessary to perform "MSR up to

r ¼ 3 for each spectrum. This is not surprising since the

mechanism of deformation faulting is expected to be impor-

tant in ZnS, and the minimum "-machine on which deforma-

tion faulting structure can be modeled is r ¼ 3. This implies, of

course, a longer memory length than either pure 3C or 2H

structure alone requires.

The generalized periods (Varn et al., 2007b) for the 2H and

3C structures at P ¼ 2 ML and P ¼ 1 ML, respectively, are

also much shorter than for the disordered structures which

average P ¼ 5:7 ML. This shows that there is spatial organi-

zation over a modest range – 6 MLs – for "-machine-disor-

dered ZnS crystals. This pales in comparison to crystalline

polytypes with repeat distances over 100 MLs, but is still much

larger than the calculated range of inter-ML interactions of

� 1 ML (Engel, 1990). We note that many of these long-

period crystalline polytypes are believed to be associated with

giant screw dislocations that are expressly absent here. For

both r and P, the disordered structures have values much

closer to that expected for the 6H structure.

In contrast to a perfect crystal, the correlation lengths are

finite rather than infinite. Interestingly, the sample that has the

most stacking disorder [as measured by h�], SK137, also has a

comparatively long correlation length. While this was

previously classified as an as-grown 3C crystal (Sebastian &

Krishna, 1994), we find that it also contains a significant

amount of stacking sequence associated with the 2H structure.

Since we cannot assume that any of these structures are in

equilibrium or the ground state, we can draw no conclusions

about the range of inter-ML interactions.

4.2. Intrinsic computation

Each of the diffraction spectra we analyzed also shows

considerable stacking disorder. Even a spectrum that is quite

crystalline, like SK134, has a configurational entropy of

h� ¼ 0:50 bits per ML. Of course, for a crystal the entropy rate

is zero and for the case of completely disordered stacking one

would have h� ¼ 1 bits per ML. If we compare SK134 and

SK135, each beginning as a 2H crystal but annealed at

different temperatures, we see that the

latter is slightly more disordered, as we

would expect. The statistical complexity,

a measure of the average history in MLs

needed to predict the next ML, is also

relatively constant at 2.3 and 2.5 bits,

respectively.

In fact, the measures of intrinsic

computation are nearly equal, except

those for SK229. However, SK134 and

SK135 have very different structures.

SK134 is largely 2H in character, while

SK135 is largely twinned 3C. Assuming

that they were identical before

annealing, this would suggest that the

disordering process has little effect on

these measures. This is, of course, tentative, since such a

conclusion can only be drawn after examining many disor-

dered samples. Experimental spectra in the midst of the 2H-to-

3C transformation would be of significant interest here. It is

possible, though, that SK137 might be such an instance. While

this is an as-grown twinned 3C crystal, as noted above, this

crystal also has some significant 2H character. Since an earlier

analysis (Sebastian & Krishna, 1994) found that both of these

were well described by a random distribution of twin faults,

they concluded that disordered 3C crystals found in the

growth furnace result from a phase transformation from the

2H structure upon cooling the furnace. We find that the two

samples (SK135 and SK137), while similar, do have qualitative

differences. We can understand this either as a crystal not

completely transformed or that the mechanism which created

SK137 is not simple. We feel that more experimental data are

needed in order to arrive at a more complete understanding.

Since h� ¼ 0:65 bits per ML for SK137 and is thus more

disordered than either SK134 or SK135, the interpretation of

this crystal being in the midst of a phase transition is a plau-

sible explanation. The most striking feature of the measures of

intrinsic computation is their relative consistency (except for

SK229), even while the structure of the crystal changes

significantly.

4.3. Configurational energies

One physical quantity amenable to calculation from the "-
machine is the difference in configurational energies of the

particular disordered polytypes. Considering possible inter-

actions up to the third nearest neighbor, a first-principles

pseudopotential calculation of the total energy of five ZnS

polytypes (Engel, 1990) determined that the configurational

energy depends only the nearest and the next-nearest neigh-

bors in the stacking arrangement. The most general expression

possible for inter-ML interactions up to the third nearest

neighbors is given by (Shaw & Heine, 1990)
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Table 4
Relative configurational energies ~EE and hexagonality �h of experimental polytypes and several
pure-crystalline polytypes.

The last column gives the history of each sample, where PC represents perfect crystal, AG as-grown and D
disordered. We use the energy coupling constants, J1 and J2, calculated by Engels and Needs along with the
reconstructed "-machine for the disordered processes to find the configurational energy of the disordered
structures via equations (2) and (3)

System hsisiþ1i hsisiþ2i
~EE �h History

2H �1.00 1.00 1.95 1.00 PC
3C 1.00 1.00 �1.79 0.00 PC
6H 0.33 �0.33 �0.65 0.33 PC
SK134 �0.58 0.63 1.13 0.80 D 2H, 573 K for 1 h
SK135 0.56 0.45 �1.02 0.24 D 2H, 773 K for 1 h
SK137 0.32 0.45 �0.57 0.34 AG 3C
SK229 �0.80 0.86 1.56 0.90 AG 2H



E ¼E0 � J1

X

i

sisiþ1 � J2

X

i

sisiþ2

� J3

X

i

sisiþ3 � K
X

i

sisiþ1siþ2siþ3: ð1Þ

Terms with an odd number of spins do not appear owing to

symmetry considerations. We take si ¼ �1 here. It was found

that J1 = 0.00187 eV per Zn–S pair and J2 = �0.00008 eV per

Zn–S pair and that J3 and K are negligible (Engel, 1990).

Given this let us rewrite (1) in terms of the energy per Zn–S

pair and take E0 ¼ 0. The configurational energy is then

~EE ¼ �J1hsisiþ1i � J2hsisiþ2i; ð2Þ

where brackets indicate the expectation value over the

stacking sequence. The expectation values are found directly

from sequence probabilities, as follows:

hsisiþ1i ¼Pð11Þ þ Pð00Þ � 2Pð01Þ

¼ 1� 4Pð01Þ

hsisiþ2i ¼Pð111Þ þ Pð101Þ þ Pð000Þ þ Pð010Þ

� 2Pð110Þ � 2Pð100Þ: ð3Þ

The configurational energy in terms of meV per Zn–S pair is

shown in Table 4 for several crystalline structures and for each

of the four disordered samples. The configurational energies

are bounded above and below by the 2H and 3C structures

with relative configurational energies of 1.95 meV per Zn–S

pair and �1.79 meV per Zn–S pair, respectively. For SK134,

the annealing process has introduced faults and has lowered

the average configurational energy from the original 2H

structure to 1.13 meV per Zn–S pair, while increasing the

configurational entropy. If we assume that SK137 is a partially

transformed 2H-to-3C crystal [though mostly 3C], then we see

that the crystal experiences further disordering and the

configurational energy falls to �0.57 meV per Zn–S pair.

SK135 shows the most advanced transformation with the 2H

structure almost completely eliminated and configurational

energy not too far from the ideal minimum at �1.02 meV per

Zn–S pair. The configurational entropy begins to fall,

however, as the transformation nears a disordered 3C crystal.

Being only a slightly disordered 2H crystal, SK229 shows the

highest configurational energy of 1.56 meV per Zn–S pair. As

we might expect from the relative magnitudes of J1 and J2, the

contribution from the J1 term completely dominates the

energy.

4.4. Hexagonality

The degree of birefringence of ZnS crystals is known to

depend only a single structural parameter – the hexagonality

�h (Brafman & Steinberger, 1966). This parameter is defined

as the fraction of MLs which are hexagonally related to their

neighbors. That is, �h is defined as the frequency of occurrence

of sequences ABA and BAB and their cyclic permutations. In

terms of the Hägg notation, these are simply Pð01Þ and Pð10Þ,

respectively. Since Pð01Þ ¼ Pð10Þ (Varn et al., 2007a), we have

�h ¼ 2Pð01Þ: ð4Þ

Sequence probabilities are directly calculable from the "-
machine, so that the hexagonality of a disordered crystal can

be easily found.

In Table 4 we show the hexagonality calculated for all the

spectra, as well as for several crystal structures for comparison.

We make several observations. The first is that the hexagon-

ality is strongly correlated with the configurational energy (a

high hexagonality implies a high configurational energy). This

is to be expected, as the configurational energy term is

dominated by the J1 term, which itself is strongly dependent

on the Pð01Þ sequence. The Pð01Þ also determines the hexa-

gonality. We also see that the 6H crystal structure has a higher

hexagonality and configurational energy than the one disor-

dered spectrum, SK135. This suggests that during a solid-state

transformation initiating in the 2H structure, a disordered 3C,

rather than a 6H crystal, is the more likely end result. This is in

agreement with experiment for ZnS. Other materials, such as

SiC, may follow different routes to disorder due, in part, to

different Ji and Ki terms.

5. Discussion

We have successfully applied computational mechanics to the

discovery and description of stacking order in single crystals of

polytypic ZnS. In doing so, we reconstructed from experi-

mental diffraction spectra the minimal, optimal and unique

description of the stacking process as embodied in the "-
machine. In contrast to previous analyses (Sebastian &

Krishna, 1994), we used all of the information in the diffrac-

tion spectra, both in the Bragg peaks and in the diffuse scat-

tering between them. We imposed no restrictions on the kind

of structures to be found, save that they be representable by "-
machines. Further, the computational mechanics approach

was not limited to the case of weak faulting, but can be used to

treat even highly disordered samples. Additionally, the "-
machine can naturally accommodate more than one parent

crystalline structure, as seen in SK134.

For two of the spectra, a sensible decomposition3 of the "-
machine into crystal and faulting structure was possible,

allowing a direct comparison between the computational

mechanics approach and the FM. The "-machine detected

structures not previously found by the FM. For example, in

SK134 we found that not only was structure associated with

deformation faulting important, but there was also structure

related to growth faults and layer-displacement faulting. We

even found nascent sequences leading to the 3C structure. For

the other two cases, while no FM-like decomposition of the "-
machine was proposed, we still found significant structure as

embodied in the "-machine. From the "-machine, physical

insight into the structure of the stacking was possible. For

example, in the r ¼ 3 reconstructed "-machine for SK137 we

could eliminate 6H structure based on the absence of a tran-

sition between CSs. We also found that 2H structure was

present. Even when no sensible decomposition into a simple
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pure-crystal and weak-faulting structure is possible, the "-
machine still directly provides sequence frequencies, which

can be used to build physical insight into the stacking struc-

ture.

From a knowledge of the "-machine, it is possible to

calculate a number of physical characteristics. In Table 3 we

tabulated the configurational entropy per ML for each sample.

Given the coupling parameters between MLs we calculated

the average configurational energy for the samples, as shown

in Table 4. We were also able to find the hexagonality for the

disordered crystals. Knowing the "-machine allowed us to find

various characteristic lengths associated with each disordered

crystal, such as the memory length and the generalized period.

We believe that additional physics can be calculated from the

"-machine.

We also calculated measures of intrinsic computation from

the "-machine. We found that the minimum memory length for

all samples was r ¼ 3, which is in excess of the calculated inter-

ML interaction range of � 1 ML for ZnS. We further found

that the statistical complexity, a measure of the amount of

information stored by the stacking process, was also much

larger than that of either the pure 2H or 3C structures. Also,

the range over which structures are found in the disordered

samples is � 6 ML.

Characterizing solid-state transitions in polytypic materials

is of considerable interest. Let us review what an "-machine

does and does not imply. Most simply put, the "-machine is the

answer to the question, ‘What is the minimal, optimal and

unique description of the one-dimensional stacking structure

of the sample?’ Any physical parameters that depend on this

description are in principle calculable from the "-machine. The

"-machine does not answer the question, ‘How did the crystal

come to be stacked in this way?’ To determine this, one must

augment the structural knowledge (as embodied in the "-
machine) with additional information or assumptions. Such

information can come in the form of a time series of structures

obtained either from a series of numerical simulations or

experiments or, in the theoretical domain, perhaps from

assumptions about weak faulting.

Since we have discovered structures in polytypic ZnS that

were undetected before, we feel that the mechanism of

faulting – previously attributed to deformation faulting –

deserves re-examination. We have provided a firm theoretical

foundation for the discovery and description of disordered

stacking sequences in polytypes and believe that additional

experimental studies are warranted. Additionally, computer

simulations of solid-state transformations in polytypes with

proposed faulting mechanisms, accompanied by the conco-

mitant reconstruction of the "-machine directly from the

sequence of MLs from the simulation, should provide a

powerful method to understand the gross features of the

transformations (Varn & Crutchfield, 2004).

Before such studies can be definitive, a quantitative

understanding of the effects of experimental error on the

reconstructed "-machine is needed. With the exception of our

introduction of the figures-of-merit, � and �, we have not

addressed this important issue here. We note that the original

experimental data were not reported with error bars and this

means that comparison with the desired "-machine error

analysis would not have been possible. Additionally, the

necessity to digitize the data undoubtedly introduced errors. It

is therefore difficult to assess the amount of error in each

spectrum. Our intuition tells us that error in the diffraction

spectrum will likely lead to suppression of the more delicate

structures on an "-machine. Therefore, one should expect to

find less structure and more randomness.

We mention that the application of computational

mechanics to the description of one-dimensional sequences is

the most general approach possible to this problem. Thus, its

application here to polytypism represents the end point in the

evolution of models to describe the disordered sequences seen

in these substances. Any alternate description can be

expressed as an equivalent "-machine and none can be more

general, since in the language of statistics an "-machine is the

minimal sufficient statistic for the underlying process. It may

be possible to find specialized algorithms that are more

sensitive or more efficient in determining an "-machine than

the one we introduced in "MSR. However, the answer, in its

most general form, will be expressible as an "-machine.

We also note that our work here represents a solution to a

significant theoretical problem: how does one extract struc-

tural information from a power spectrum? Our application has

been to polytypism, but the principles underlying our solution

may be applied quite generally to domains in which spectral

information is available.

Future directions for this work include an application of

"MSR to other polytypes, as well as to substantially more

complex materials. The extension of these ideas to the more

common cases of disorder in two and three dimensions is also

desirable. The development of computational mechanics in

higher dimensions would significantly aid in the classification

and understanding of disorder in many physical systems. Some

recent progress has been made on the understanding of the

pattern and computation in higher dimensions (Lindgren et

al., 1998; Feldman, 1998; Feldman & Crutchfield, 2003; Young

et al., 2005).
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